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abstract Extracting spatial heterogeneities from patient-specific data is chal-
lenging. In most cases, it is unfeasible to achieve an arbitrary level of detail
and accuracy. This lack of perfect knowledge can be treated as an uncertainty
associated with the estimated parameters and thus be modeled as a spatially-
correlated random field superimposed to them. In order to quantify the effect
of this uncertainty on the simulation outputs, it is necessary to generate several
realizations of these random fields. This task is far from trivial, particularly
in the case of complex geometries. Here, we present two different approaches
to achieve this. In the first method, we use a stochastic partial differential
equation, yielding a method which is general and fast, but whose underlying
correlation function is not readily available. In the second method, we propose
a geodesic-based modification of correlation kernels used in the truncated
Karhunen-Loève expansion with pivoted Cholesky factorization, which renders
the method efficient even for complex geometries, provided that the correlation
length is not too small. Both methods are tested on a few examples and cardiac
applications.
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1 Introduction

The ubiquitous presence of tissue heterogeneities affects the electrophysiological
and mechanical function of the heart. An example of the severity of these effects
is seen in the atria, whose tissue is a characterized by a complex structure of
several fibre bundles [15]. At the micro-structural level, atria are often affected
by fibrosis [1].
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Despite their relevance in cardiac modeling, heterogeneities in the cardiac
tissue are often neglected in patient-specific studies because they cannot be
extracted from clinical imaging. An alternative is to include such heterogeneities
as random variables, reflecting the inability to accurately describe the spatial
distribution of tissue properties. It would be desirable to explicitly quantify this
lack of knowledge in the output of cardiac simulations, providing confidence
intervals of the quantities of interest [14].

Spatial heterogeneities in the parameters of the model typically exhibit a
certain degree of spatial correlation. Generating correlated, stationary, and
isotropic random fields for simple geometries, e.g. a box domain, is relatively
straightforward. Efficient methods based on circulant embedding can be exploited
to quickly sample random fields for a given correlation function [6]. Problems
arise, however, in non-convex domains such as the heart muscle. If the shape of
the domain were just ignored and the field were sampled in the bounding box of
the original domain, anatomically close but functionally distant regions may be
more correlated than expected.

A solution is offered by stochastic partial differential equations (SPDEs)
[13]. Each sample is the solution of a PDE. The correlation function is encoded
implicitly in the equation, as the solution of the second-moment equation.

Alternatively, random fields are commonly sampled using the truncated
Karhunen-Loève (KL) expansion, a linear combination with random coefficients
of eigenfunctions of the Hilbert-Schmidt operator associated with the correlation
function [11]. Obviously, we rely on the assumption that the correlation kernel can
be evaluated easily, e.g. when the domain is geometrically simple and the kernel
is expressed in terms of the Euclidean distance. However, for more complicated
domains this is not possible.

Here we analyze these two approaches to generate random, spatially-correlated
heterogeneities on complex geometries. In Section 2, we recall the SPDE approach,
including non-stationary and anisotropic random fields. In Section 3 we propose
generalized correlation kernels, obtained by replacing the Euclidean distance with
the geodesic one. We conclude with a comparison between the two methods (in
Section 4) and an application to atrial fibrosis (Section 5).

2 Random fields via SPDE

A simple, yet powerful method to sample random fields on arbitrarily complex
geometries is based on SPDEs. We consider the following one:

{

(κ2 −∇ ·D∇)
α

2 u = W, x ∈ Ω ⊂ R
d,

D∇(κ2 −∇ ·D∇)j · n = 0, x ∈ ∂Ω, j = 0, . . . ,
⌊

α−1

2

⌋

.
(1)

where κ > 0, α = ν+d/2 with ν > 0, and D(x) is a uniformly elliptic tensor field.
On the right hand side we have a Gaussian white noise W [13, Def. 6, sec. B.2].
The linear fractional SPDE (1) was analyzed in detail by Lindgren et al. [13].
In summary, the correlation function of u is related to the Matérn kernel. The
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parameter ν, therefore, is a measure of the smoothness of the random field, while
κ is inversely proportional to the correlation length.

The solution for general α is discussed by Bolin et al. [2]. A simpler setting
occurs when α/2 = K ∈ N, which corresponds to the choice ν = 2K − d/2.
Denoting by uK the solution of (1) with this assumption, the following iterative
scheme applies:

u0 = W,

{

(κ2 −∇ ·D∇)uk = uk−1, x ∈ Ω, k = 1, . . . ,K,

D∇uk · n = 0, x ∈ ∂Ω, k = 1, . . . ,K.
(2)

The Galerkin discretization of (2) follows by selecting a finite-dimensional
Vh subspace of H1(Ω), for instance a finite-element basis. Denoting by {φi}Ni=1

a
basis for Vh, of dimension N , we define the matrices:

[K]ij = κ2〈φj , φi〉+ 〈∇φj ,∇φi〉, [M]ij = 〈φj , φi〉.

Then the algorithm (2) reduces to:
{

Ku1 = w,

Kuk = Muk−1, k = 2, . . . ,K,

where w is the discrete Gaussian white noise, that is an N -dimensional Gaussian
sample with zero mean and covariance M. Efficient methods to sample the
discretized white noisew have been proposed. Mass lumping diagonalizes the mass
matrix using reduced quadrature, rendering the sampling procedure trivial. Mass
lumping is easy for linear finite elements, but not for higher-order polynomials.
Croci et al. computed the Cholesky decomposition of the mass matrix element-
wise, making the evaluation of white noise very efficient and parallelizable [5].
Alternatively, one can select a Galerkin space Vh with an orthonormal basis, as
for instance in spectral methods [3].

Figure 1 provides an example of a random field sampled with the SPDE
approach for increasingly values of ν. The simulation also shows the effect of
non-constant anisotropic D(x) for sampling non-stationary random fields.

3 Random fields via KL with geodesic distance

An alternative method to sample random fields is based on the KL expansion,
for which we have to choose an appropriate correlation function. Given a square-
integrable correlation function r(x, y), i.e. r is in L2(Ω ×Ω), the random field
u(x, ω) with mean ū(x) and covariance r(x, y) reads as follows:

u(x, ω) = ū(x) +

∞
∑

i=1

√

λiψi(x)Zi(ω),

where Zi are jointly Gaussian random variables with zero mean and unit variance
and {λi} and {ψi} are respectively eigenvalues and eigenvectors of the Hilbert-
Schmidt operator associated with r(x, y). In the discrete setting, as above, the
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Fig. 1. Example of a random field sampled with the SPDE approach on a complex
domain. From left to right we increased the value of ν, using K = 1, K = 5 and K = 20.
The corresponding values for ν, given that d = 2, are respectively 1, 9 and 39. In
the central area, we imposed an anisotropy factor 100 in the angular direction. The
anisotropy ratio is reduced to isotropy towards the “leaves.” The correlation length is
5% of the domain size.

eigenvalue problem reduces to:

Av = λMv, [A]ij =

∫

Ω

∫

Ω

r(x, y)φj(y)φi(x) dxdy.

To compute the eigendecomposition efficiently we apply the low-rank pivoted
Cholesky decomposition to replace the (large) matrix A ∈ R

N×N by the low-rank
matrix Am := LmLT

m, with Lm ∈ R
N×m and such that ‖A−Am‖ < ε [10]. In

general, the performance of the method strongly depends on the decay rate of the
spectrum of A. Otherwise, methods based on H-matrices for directly computing
the square root of the covariance matrix show better performance [7].

A major limitation of this approach is that, for kernels depending on the
distance function, that is r(x, y) = h(‖x− y‖), the Euclidean distance does not
always account for the geometry of the domain. It would be preferable to adopt
the geodesic distance. In this way, geometrically-close but topologically distinct
regions correctly show small correlation. There are two major problems to be
addressed: 1) how to efficiently evaluate the distance function, and 2) how to
ensure positive-definiteness of the corresponding Hilbert-Schmidt operator.

When relying on low-rank pivoted Cholesky decomposition, it is not necessary
to assemble the full matrix A: the algorithm only needs the diagonal entries and
the function returning the i-th row of the matrix. Therefore, we approximate
such functions with

[A]i,j ≈
∫

Ω

∫

Ω

h(δ(xi, y))φj(y)φi(x) dxdy.

where δ(xi, y) is the solution of the eikonal equation:
{

‖∇yδ(x, y)‖ = 1, x ∈ Ω \ {xi},
δ(xi, xi) = 0.

(3)
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A B C

Fig. 2. Random fields generated with geodesic distance. A: a domain with a hole in the
central area. Geometrically close regions around the cut are uncorrelated, as expected.
B: when adopting the Euclidean distance, a correlation around the cut is present.
C: a more complex example with non-constant and anisotropic metric for the distance
function. The correlation length is 20% of the domain size in all the examples.

The number of required eikonal evaluations matches the rank of the low-rank
approximation of A. In Figure 2, we compare random fields generated with
geodesic distance (A) and with Euclidean distance (B).

The second issue, regarding the positive-definiteness of the Hilbert-Schmidt
operator, is more subtle. From our experience, the pivoted Cholesky procedure
often ends prematurely because of a negative pivot. It also occurs on simple
domains with Euclidean distance approximated by the eikonal solution, suggesting
that the numerical error may play a role. Nonetheless, the resulting eigenfunctions
are sufficiently accurate to sample random fields via KL expansion. There are
examples of correlation functions, e.g. the square-exponential, which are not
positive definite even with exact geodesic distance: for instance, the sphere with
great circle distance [8].

The geodesic distance can also be generalized to include varying velocity and
anisotropy, substituting the norm in (3) with

√

G(x)p · p, with G symmetric
positive definite. An example is provided in Figure 2C, where G = σf f ⊗ f +
σt(I− f ⊗ f), σf = 1 = 10σt, f = cosα(z)e1 + sinα(z)e2 and α(z) = π

3
(2z − 1).

4 Comparison of the two methods

In this section we compare the SPDE and the geodesic-based KL (geoKL)
approaches in terms of quality of the samples and computational cost. In the
test, we drew 10 000 samples from a random field defined on a hollow square
domain, using both methods (see Figure 3). The domain was discretized with a

uniform mesh of size h = 1/100. A squared-exponential kernel h(d) = e−d2/ρ2

with fixed correlation length of ρ = 0.2 was used in geoKL. Correspondingly, we
set the number of iterations K for the SPDE method to K = 5 and κ = 2

√
ν/ρ.
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Fig. 3. Comparison between geoKL and SPDE methods for sampling of random fields.
A: estimated standard deviation for geoKL method, B: estimated standard deviation
for SPDE method, C: estimated correlation as function of distance along geodesic
connecting points (0.25, 0.25) and (0.75, 0.25). A total of 10 000 samples were drawn.

Estimated mean and variance for each method are reported in Figure 3. The
variance with the geoKL method was uniform across the domain, with some
numerical artifacts (Figure 3A). Such oscillations also present in the trace of Am

and are likely due to numerical error in the geodesic distance. For problem (3), the
singularity at the origin y = xi is indeed responsible for severe degradation of the
convergence rate. The variance with the SPDE method (Figure 3B) showed instead
a strong boundary effect, being significantly larger close to the boundary. This is
a known effect of Neumann boundary conditions [12]. Finally, we computed the
correlation with respect to the geodesic distance from point (0.25, 0.25) towards
point (0.75, 0.25): see Figure 3C, reporting excellent agreement.

Method geoKL took 26 s to approximate 87 eigenfunctions (tolerance was
10−8). Sampling via KL expansion took a fraction of a second. At shorter
correlation lengths, the geoKL method took significantly longer time: respectively
87 s with ρ = 0.1 and 270 s with ρ = 0.05. In contrast, the computational cost of
drawing one sample with the SPDE method was constant, regardless of the value
of ρ. In this case the total time was 50min (3 s per samplex). As usual, timings
are purely indicative, as they are greatly affected by implementation. Moreover,
the SPDE-based samples were not computed in parallel.6

5 Application to atrial fibrosis

Initiation and perpetuation of atrial fibrillation (AF) is highly associated to
heterogeneities in the substrate [9]. Hence, computational AF models for clinical
applications should account for uncertainty in the anatomy and heterogeneity in
the parameters. In this section we provide two examples of spatially-correlated
heterogeneities for the atria.

6 Python code is available at the address https://github.com/pezzus/fimh2019.

https://github.com/pezzus/fimh2019
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A B

Fig. 4. Examples of randomly-generated fibrosis patterns on 3D tissues. A: the same
configuration described in the last example of Figure 2, but with shorter correlation
and stronger anisotropy. B: a fibrosis pattern on a realistic atrial geometry.

Cardiac myocytes form a structure of branching and merging fibers. Structural
damage and fibrosis have a tendency to follow the main fibre orientation. Most
commonly, these fibrosis patterns have dimensions in the order of the size of
a few myocytes, i.e. ten to a few hundred micrometer. Such small structures
cannot be assessed by clinical imaging methods; at best, techniques such as late
gadolinium-enhanced magnetic resonance imaging provide the density of fibrosis
averaged over a volume of several cubic millimetres [16]. Several modelling studies
of cardiac electrophysiology have therefore used rule-based methods to generate
anisotropic correlated random patterns to implement fibrosis in models [4,16].

Figure 4A shows a simulation of a random field with strong and non-stationary
anisotropy in the correlation length. The interstitial space in the figure may
represent fibrosis at microscale, for instance. We used the SPDE approach with
N = 10, ρ = 0.05 (unit-length), and diffusion coefficient in the fibre direction 100
times larger than in the cross-fibre direction.

Figure 4B involves a more complex geometry. We simulated a fibrosis pattern
on a patient-specific atrial anatomy using two random fields, one with short
correlation length (4mm), representing tissue-scale fibrosis, and another with
longer correlation (2 cm), for organ-scale “patchiness.” The two random fields
were eventually averaged. The synthetic fibrosis pattern in Figure 4 resembles
patterns observed with late gadolinium enhanced MRI [1].

6 Final remarks

We presented two alternative approaches to simulate spatially-correlated random
fields for complex geometries. The SPDE approach is fast and sufficiently gen-
eral, is easy to implement within any finite-element code, and handles general
geometries. However, it does not provide much flexibility in the choice of the



8 S. Pezzuto et al.

correlation function. In contrast, sampling the random fields with KL expansion
provides the freedom to select the kernel, including the geodesic distance, but it
could be computationally demanding in some cases.

A potential application of such techniques is the automatic generation of real-
istic fibrosis patterns for the atria. This is important, for instance, for quantifying
the uncertainty in cardiac electrophysiology, an emerging trend in the community
and fundamental in our opinion in view of clinical applications.
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