Simulation of Fractionated Electrograms at Low Spatial Resolution
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introduction To compute extracellular poten-
tials from transmembrane potentials an elliptic
boundary-value problem must be solved [2, 7].
To avoid artefacts, this must be done at a spatial
resolution of 0.2 mm or better [1]. For macroscopic

heart models this leads to very large linear systems.

purpose We attempted to reduce such artefacts
by using a special downsampling method for the
source data.

conclusion This method is sufficiently accurate
for visualization of electrograms in a human-heart
model, even in inhomogeneous tissue.

Methods

Simulations were performed using previously-
described software [6]. Uniform finite-difference
meshes were used. Simulations were performed on
32-128 processors of an SGI Altix 4700 supercom-

puter.

Propagating action potentials were simulated with a
monodomain reaction-diffusion equation at 0.2-mm
resolution in a model of the human ventricles.

Extracellular potentials (electrograms) ¢. were com-
puted by solving the bidomain equation

V- [Gi(x) + Ge(x)| Vpe(x,t) = I(x,t) (1)

where x is position, t is time, Gj, G¢ are the intracel-
lular and extracellular conductivity tensor fields, and
I is the transmembrane current given by

I(x,t) = —V - Gj(x) VVim(x, 1), 2)

where Vi, is the membrane potential. We evaluated
I(x,t) at the full 0.2-mm resolution of the reaction-
diffusion model.

To solve equation (1) at 1-mm resolution, I(x, ) was
taken from the high-resolution propagation model
and summed over 1-mm?® volumes. Each fine-mesh
(F) node contributed to 1-8 coarse-mesh (C) nodes.
The weight of each contribution was

(

0, ifdy>NVvd,>NVvd,>N
(N —dy)(N—dy)(N—d;)/N° otherwise

\

where N is the ratio of fine to coarse grid resolution
(N = 5 here) and dy, dy, d is the number of fine-mesh
edges between the C node and the F node along the
X, y, and z axis, respectively.

¢ was computed at 1-mm resolution both for the iso-
lated heart (1 million nodes) and for the in-situ heart
(42 million nodes).

To test the validity of the low-resolution results, elec-
trograms were also computed at the full 0.2-mm res-
olution in the isolated heart (113 million nodes).
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Anatomic model

An anatomic model of a human heart and torso was
created from MRI data as described earlier [5]. This
model described torso surface, myocardium, intra-
cavitary blood masses, and lungs.

For a severe test of the proposed method, we cre-
ated a situation where inhomogeneous tissue caused
fractionated electrograms. Fibrofatty replacement
and Na-channel block were simulated as in previous
work [3, 4]. Fibrosis was simulated by introducing
barriers with a thickness of 0.2 mm in the outer 50 %
of the right ventricular wall. In these barriers, no in-
tercellular coupling was present. In bidomain terms,
G; = 0 but G¢ had the normal value for myocardium.
In the barriers, gaps of 0.2 x 0.2 mm were made. The
conductivity of the fast Na current was set to 30 % of

its normal value, in the entire heart.

Display of results

Activation times, determined automatically from the
activation process of the fast Na current, are shown
with colors in a transverse section of the heart model.
The plane of section and needle positions (A-E) are
shown below.

Unipolar electrograms taken from 6 positions along
each of 5 virtual needle electrodes (labeled A-E) are
shown.
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The figure above shows simulated activation times in
a single plane of the three-dimensional heart model,
with the positions of the virtual needle electrodes.
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Simulated electrograms

Electrograms computed at 0.2-mm resolution:
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Electrograms computed at 1-mm resolution:
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Close-up (black, 1-mm resolution isolated heart; red,
0.2-mm resolution isolated heart; blue, 1-mm resolu-
tion in-situ heart):
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