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Understanding ST depression in the stress-test ECG 

OObbjjeeccttiivvee::  The electrocardiogram (ECG) obtained during stress testing often shows a typical pattern of primary ST depression. A similar
pattern can occur in unstable angina. Current textbooks consider ST depression as a direct result of partial occlusion of a coronary artery.
However, animal models could not reproduce this phenomenon. An alternative explanation for ST depression specific to stress testing involves
global subendocardial ischemia. In this study, we evaluated both explanations with a realistic mathematical model of the human heart. 
MMeetthhooddss::  The ECG was simulated with an anisotropic reaction-diffusion model of the human heart and an inhomogeneous boundary-element
model of the human torso. 
RReessuullttss::  Limited subendocardial ischemic zones caused small ST depression in ECG leads not overlying the ischemic region. An ischemic zone
of 50% transmural extent covering the entire left ventricular subendocardium caused an ST-depression pattern similar to that observed dur-
ing stress test. 
CCoonncclluussiioonn::  In contrast to regional subendocardial ischemia, global subendocardial ischemia can explain ST depression in our model.
(Anadolu Kardiyol Derg 2007: 7 Suppl 1; 145-7)
KKeeyy  wwoorrddss:: ischemia, ST deviation, non-ST-elevation myocardial infarction, computer model, stress test 
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Original Investigation

Introduction

The ECG obtained during stress testing often shows a typical
pattern of ST depression. A similar pattern can occur sponta-
neously in patients with unstable angina (1). The current textbook
explanation of ST depression involves regional subendocardial
ischemia as a direct result of partial occlusion of one or more coro-
nary arteries. This would imply that ST-segment changes depend
on the affected artery or arteries (2). However, in contrast to ST
elevation, ST-depression patterns appear to be independent of the
affected arteries (1, 3). Moreover, animal models could not repro-
duce ST depression at a resting heart rate (4–6). Recent theoretical
work has shown that the classical relation between regional
subendocardial ischemia and epicardial ST depression relies on an
isotropic mathematical model of the myocardium (7, 8). Isotropic
models were previously used because of practical limitations. In a
more realistic anisotropic computer model of the human heart, ST
depression could only be obtained with subendocardial ischemic
zones that covered more than half of the left ventricle (8). In this
study, we investigated whether such a realistic model can repro-
duce the pattern of ST depression that is typical for the stress test. 

Methods 

The ECG was simulated with a reaction-diffusion model of the
human heart incorporating anisotropic myocardium with trans-
murally rotating fiber orientation at 0.25-mm resolution, and an

inhomogeneous boundary-element torso model. Details of this
model have been published previously (9). Ionic currents in the
propagation model were computed with the Ten
Tusscher–Noble–Noble–Panfilov (TNNP) model of the human
ventricular myocyte (10). Ischemia was represented by setting
the extracellular potassium concentration to 10 mM (normal
value 5 mM). 

Our model is based on the bi-domain model of the myocardium.
It represents the myocytes and gap junctions as a continuum
called the “intracellular domain,” and the interstitium and
microvasculature as another continuum, called the “extracellular
domain.” Both domains have anisotropic conductivity. The model
accounts for both these anisotropies when it computes 
propagating action potentials, but it cannot deal with extracellu-
lar anisotropy (Re) when computing the ECG. To compensate, we
used a reduced intracellular anisotropy (Ri) for ECG computation.
Thus, the ratio of intracellular to extracellular anisotropy (R) was
realistic. This ratio is much more important for ST-segment
changes than the individual anisotropy ratios of the two domains
(8). Normal values are Ri=10 and Re=2.5, so R=Ri /Re=4 (11).
Bound to using Re=1, we set Ri=4 for ECG computation. 

Results 

An ischemic zone of 50% transmural extent covering the 
entire left ventricular subendocardium caused an ST-depres-
sion pattern similar to that observed during stress test. This was 



verified for intracellular to extracellular anisotropy ratios 
R=1 and R=4 (Fig. 1). This increase in anisotropy ratio slightly
increased T-wave amplitude in the precordial leads, but did not
significantly affect the ST segment. Compared to a simulated
normal ECG, the QRS complex was only slightly affected: R peak
amplitudes were reduced by 20% in leads II, III and AVF. 

In contrast to a global subendocardial ischemia, regional
subendocardial ischemia induced ST-segment changes that
depended strongly on the anisotropy ratio of the myocardium.
Figure 2 shows ST changes due to an ischemic zone with 5 cm
diameter and 50% transmural extent in the lateral wall of the left
ventricle. The ECGs were simulated with isotropic tissue (R=1) and
anisotropic tissue (R=4). Lead V6, which overlies the ischemic
zone, is shown in panel A. Panel b shows the ST deviation in all
precordial leads. ST depression in the leads overlying the
ischemic zone was only obtained with isotropic tissue. With a
more realistic anisotropy ratio of 4 the maximum ST depression
shifted to lead V3. 

Despite the smaller affected muscle mass, regional ischemia
led to more prominent QRS changes than global subendocardial
ischemia. Especially the end of the QRS complex was affected.
As a result of regional ischemia, the QRS complex became 
narrower in lead III. 

Discussion 

We have shown that regional subendocardial ischemia leads
to an ST-deviation pattern that strongly depends on the
anisotropy of the tissue. When a realistic anisotropy ratio was
used, ST depression was not centered over the ischemic region.
Global subendocardial ischemia led to considerable ST depres-
sion in all standard leads, with little dependence on anisotropy. 

Classically, primary ST depression has been considered to be
a direct result of subendocardial ischemia due to partial occlusion
of one or more coronary arteries. Previous modeling studies have
shown that if regional subendocardial ischemia is present, it can
be localized on the body surface (2). Our simulations of regional
subendocardial ischemia confirm this result. If the myocardium
was isotropic (R=1), the ST depression was maximal in the leads
overlying the ischemic region. With a more realistic anisotropy ratio
R=4 the pattern still depended on the location of the ischemia, but the
maximum ST depression occurred adjacent to the ischemic region. 

Thus, modeling studies suggest that if partial occlusion leads
to regional subendocardial ischemia, the occlusion can be locali-
zed by the ECG. However, in contrast to ST elevation, primary ST
depression during stress testing and in unstable angina usually
occurs in a typical pattern that does not depend on the affected
artery or arteries (1, 3). Moreover, partial occlusion of a coronary
artery in animal models did not lead to ST depression (4–6). We
hypothesized therefore that the “stress-test ECG” is not caused by
regional ischemia, and is not a direct result of partial occlusion.
During stress testing, reduced diastolic coronary filling time and
elevated left ventricular end-diastolic pressure can reduce perfu-
sion in the subendocardium, leading to a global subendocardial
ischemia (12). Our present results suggest that global subendocar-
dial ischemia can explain the stress-test ECG. This ST depression
would not depend on the territory of the affected artery.
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Figure 1. Simulated ECG with an ischemic zone of 50% transmural ex-
tent covering the entire LV subendocardium. Black traces: isotropic
myocardium (R=1). Grey traces (red online): anisotropic myocardium
(R=4). Anisotropy has little influence on the ECG in this global suben-
docardial ischemia. 
ECG- electrocardiogram

Figure 2. Effect of regional ischemia. Panel A: ECG lead V6 without ische-
mia (grey line), with regional subendocardial ischemia and isotropic tis-
sue (solid black line), and regional subendocardial ischemia with anisot-
ropic tissue (dashed line). Panel B: ST-segment changes in all precordial
leads, for isotropic (solid line) and anisotropic tissues (dashed line)
ECG- electrocardiogram
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