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Abstract 

Mathematical modeling plays an important role in cardiac electrophysiology. The purpose of 
this paper is to outline what the present state of computer hardware and algorithm 
development permits us to model, and to show how mathematical models help us to 
understand the pathophysiology of the heart. 

1. Introduction 

Modeling and experimentation have complementary roles in science. The daily business of 
research is to test theories using observational data. It is crucial to determine which 
observations agree with the theory and which do not. This can be a difficult task if complex 
systems are involved. For example, one cannot state the diameter of the earth without first 
modeling it as a sphere. This model could be improved by observing that the planet is slightly 
shorter from pole to pole than across the equator. The resulting model has two parameters 
instead of one. This model too can be improved upon, by observing that the earth is in fact a 
little egg-shaped, the south pole being slightly flatter than the north. Obviously, this model 
ignores the mountains, and a model that includes a million extra parameters to describe the 
mountains still ignores the trees, et cetera. The true number of parameters is not even 
countable. The same is true for any system that is more complicated than a small molecule, 
and particularly for biological systems. The model one chooses to use depends on the 
investigation or application one envisages. 
Models are often mathematical. In the case of the earth, an important scientific question could 
be answered by looking at it from a distance and observing that its shape is more like an 
orange than like a pancake. Successively more elaborate questions involve first numbers, then 
mathematics, and finally computers. If a model is so complex that a computer is necessary to 
evaluate it, we speak of a “numerical model” or “computer model.” Every model is a 
(mathematical) representation of the theory and the experiment, with simplifications that are 
believed to be acceptable. The model predicts what experimental observations should be 
made under given conditions if the theory is true and the simplifications are indeed 
acceptable. Importantly, a model is often necessary to give a meaning to descriptive terms, 
such as “the diameter of the earth.” In electrophysiology, the electrical resistivity of tissue is 
an example of a term that has no meaning unless a simplified model of the tissue is assumed, 
because the actual resistivity varies enormously on a sub-cellular scale. 
In the biological sciences, complexity is an important challenge for models. The level of 
detail that is believed to be relevant can be high. Often, the simplifications used are more 
dictated by what is technically possible than by what is believed acceptable. The growing 



performance of computers has therefore had a major impact on the reliability of mathematical 
models. 
There are many topics in biology that are beyond the grasp of mathematical modeling, due to 
a lack of quantitative data. On the other hand, a mathematical approach is very well possible 
and indeed necessary in a field like cardiac electrophysiology. The electrical behaviour of 
individual cells is well known, and computational resources now permit us to build a model of 
an entire heart based on models of individual cells. The use of such models allows us to test 
whether hypothesized cellular-level changes may explain changes observed in clinically 
measurable signals such as the electrocardiogram (ECG) and endocardial catheter 
electrograms. 

2. A brief history of cardiac models 

The first mathematical model of the ECG was developed a century ago by Einthoven [8]. It 
considers the heart as a vector in a plane. The length and orientation of this vector can be 
determined from the potentials measured with three electrodes, on both arms and on the left 
leg of the subject. For any combination of measured potentials, there is a unique amplitude 
and orientation of the vector. Despite its simplicity, this model is still used today, for example 
to quantify the QRS angle in the frontal plane. Indeed, the notion “QRS angle” has no 
meaning if this model is not assumed. 
Einthoven’s model only explains the three limb leads. To understand the precordial ECG 
leads, a lot more complexity must be added. We need more than one vector, and we must be 
more specific about what we mean by these vectors; they will have to become physical 
current dipoles. We must also specify mathematically how these current dipoles relate to the 
electrical potential on the torso, and we must find a way to decide how strong these dipoles 
are and in what direction they point. To do so, Miller and Geselowitz in 1978 [13] created a 
computer model with 4000 points. Activation could propagate from one point to another. 
When they activated a few early sites on the endocardium, the model would imitate the 
normal activation order of the heart, which by that time had been measured [5]. From the 
activation times, and a simple model of the action potential, they could calculate their dipole 
sources, and from these, through some complicated mathematics, they could compute the 
ECG. This simulated ECG resembled a normal ECG, demonstrating that the activation order 
measured in an explanted heart accounts for the measured shape of the QRS complex in the 
ECG. 
An even more elegant demonstration of the power of mathematical models is the work of 
Hodgkin and Huxley in the 1950s [9]. They performed extensive measurements of ionic 
currents through the membrane of a squid’s giant axon. By studying the transient currents that 
resulted from imposed changes in membrane potential, they were able to devise mathematical 
models for the individual ionic currents. When they assembled these models into a model of 
the membrane as a whole, they were able to reproduce the neuron’s action potential. This, in 
the words of Noble and Rudy [15] “spectacularly succesful” model not only proved that these 
ionic currents are the most important determinants of the action potential, but also predicted 
the existence of distinct channels for sodium and potassium ions, which could be verified 
experimentally only decades later [8]. This work earned Hodgkin and Huxley a Nobel prize in 
1963. 
Later, models for different cell types were developed, notably for cardiac myocytes. Models 
also became more complicated, some accounting for up to 20 different ionic currents. The 
models also generalized the Hodgkin-Huxley scheme, from a series of independent “gates,” 
which had a certain probability to open or close, to a model of a complex molecule that can 
assume different conformational states, with probabilities to flip from one state into another. 



It is with such complicated models [23,25] that researchers nowadays attempt to predict the 
behaviour of anything from a single cell to an entire heart, and from there to simulate the 
ECG. 
 

3. The present: reaction-diffusion models 

Cell models can be coupled to model a piece of tissue. This coupling allows the simulation of 
propagating action potentials. Such a model is called a reaction-diffusion model. Reaction 
stands for the ionic current behaviour as a function of the membrane potential, and diffusion 
stands for the spread of current from one cell to another. The equation for the membrane 
potential accounts for this: current can not only come through the local membrane, but also 
through gap junctions from neighbouring cells, as a “diffusion current.” In practice, we 
usually do not assign a membrane model to each individual cell; we can let each membrane 
model represent a little block of tissue with a size in the order of a tenth to a quarter of a 
millimeter. The size of these blocks is dictated by the properties of the steep depolarisation 
wavefront, which must be captured accurately enough to obtain the correct propagation 
velocity. 
This type of model differs from that by Miller and Geselowitz in that it does not use 
predefined action potential shapes and conduction velocities, but computes action potentials 
and their propagation simultaneously, based on what is assumed to be the underlying 
mechanism. With respect to the depolarisation sequence, such models allow accurate 
modeling of delayed activation for example due to sodium-channel malfunctions (Brugada 
syndrome), ischaemia, or tissue damage (Cardiomyopathy). Reaction-diffusion models also 
challenge our thoughts on ventricular repolarisation: It is generally accepted that the 
repolarisation order of the ventricles must be mostly opposite to the depolarisation order to 
obtain T-wave concordance (positive T waves in leads that have a predominantly positive 
QRS complex). The necessary dispersion of action potential duration can easily be 
constructed in models that use predefined action potentials. But a reaction-diffusion model in 
which action potential duration is based on experimental evidence on the membrane level 
does not reproduce this behaviour at all. As a temporary repair, these models are nowadays 
configured with a partly hypothetical dispersion of the repolarising current density, e.g. the 
slow component of the delayed rectifier current [26]. However, this failure plays an important 
role in pointing out that information is lacking on this point, and that in fact we do not 
understand why normal T waves on the ECG are concordant with the QRS complexes. 
 

4. Bidomain models 

The first reaction-diffusion models were based on the assumption that all the electrical 
resistance of the tissue comes from the connections between the cells. The extracellular 
medium was assumed to be a perfect conductor. This assumption was important to keep the 
mathematics tractable. More recently, it has become possible to account for the resistivity of 
the extracellular medium. This gives rise to so-called “bidomain” models [31]. In contrast to 
their “monodomain” predecessors, these models can account for the shape of the electric 
signals that can be measured with electrodes inserted in the myocardium (“electrograms”). 
However, because the numerical simulation of a bidomain model is more than an order of 
magnitude slower than the simulation of a monodomain model [24], the monodomain model 
continues to underlie many simulations of cardiac propagation and ECG. The validity of the 
monodomain model for these purposes was recently shown in a comparative study [17]. 
 



5. Applications 

Thousands of papers and many books have been published on the development and 
application of cardiac models. An exhaustive review of model applications is therefore not the 
purpose of this section. Rather, a few examples will be cited, and one application will be 
treated in detail in the next section. 
The model studies that are, from the physiologists or clinicians point of view, the most remote 
from the patient’s bedside are those in the field of nonlinear dynamics. These studies, 
published mostly in physics journals such as Chaos and Physical Review E., deal with cardiac 
arrhythmia on the most basic level [4]. Such studies have contributed to the development of 
our understanding that ventricular fibrillation is not always completely chaotic, but can have 
organized components; to the hypothesis that dispersion of refractoriness is arrhythmogenic; 
and to the analysis of concealed pathways in ventricular tachycardia substrates [32]. 
Closer to the heart, spiral and scroll wave phenomena are studied extensively in models 
ranging from a simple sheet to the complete human ventricles [1,33]. Using realistic reaction-
diffusion models, these studies now begin to address the sometimes non-intuitive effects of 
drugs on hypothesized arrhythmia mechanisms [1,30]. Model studies of this kind are found 
not only in the physics journals, but also in a wide range of biomedical-engineering, 
physiology, and cardiology journals such as Annals of Biomedical Engineering, and Am. J 
Physiol. H. 
Strong links with experimental research are present in studies where the relation between ion-
channel heterogeneity, mutations, cellular behaviour, and tissue behaviour are investigated. 
For example, modeling studies demonstrated that known ion-channel heterogeneities can 
explain many features of the ECG [7], and that paradoxical effects of mutations can be 
mechanistically understood [2,22]. Other studies involved reaction-diffusion models to 
investigate arrhythmia development in ischaemic myocardium [21]. 
Bidomain reaction-diffusion models are applied by many researchers to investigate the 
determinants of success or failure of defibrillation shocks [27]. Modeling studies of applied 
currents for stimulation and defibrillation have predicted the phenomenon of “virtual 
electrodes” [6]. Another highly relevant application of bidomain models is the elucidation of 
the mechanisms underlying such important experimental and clinical tools as monophasic 
action potentials and activation-recovery intervals [3,20,29]. 
Presently, while reaction-diffusion models have taken their place in simulations of relatively 
small tissue preparations, most simulations of the ECG are still based on relatively simple 
models, similar to the Miller-Geselowitz model discussed above, only more detailed, or easier 
to operate. An excellent example here is the freely available ECGSIM program [16]. The 
continued use of relatively simple models here is well justified, because the ECG changes due 
to many phenomena (e.g. ischemia, repolarisation disorders, ectopic beats) can be very well 
understood in terms of such simple models.  However, these models do have their limitations, 
and several groups have now made their first steps towards models that will be able to 
simulate all the way from the most obscure ion-channel abnormality to the most ubiquitous 
diagnostic tool in cardiology [12,28].  
 

6. An example 

This section is devoted to a single example, in which a large-scale model of the human heart 
was applied to the study of “primary ST-segment depression” in the ECG. The ST segment is 
the part of the ECG between the QRS complex, which represents the depolarisation of the 
ventricles, and the T wave, which represents their repolarisation. In a normal ECG, the ST 
segment is more or less isoelectric, because at that time all cells have approximately the same 



membrane potential. In case of myocardial ischaemia, a part of the myocardium has an 
elevated resting membrane potential. This leads to changes in the part of the ECG between the 
T wave and the following QRS complex. However, for technical reasons this part of the ECG 
is defined to have zero potential. Therefore, it is the ST segment that appears to be modified, 
and the diagnosis of ischaemic symptoms is said to be based, among other ECG features, on 
the ST segment.  
It is relatively easy to understand how the ST segment changes in case of ischaemia affecting 
the entire thickness of the ventricular wall in a limited part of the heart muscle. For example 
the work of Holland and Brooks [10] predicted this correctly, based on a very simple non-
numerical model of the heart. Such “transmural” ischaemia leads to ST elevation measured on 
ECG electrodes that overly the affected region of the heart. However, the same authors also 
made predictions with respect to ischaemia affecting only the inner layers of the wall, which 
is believed to occur as a result of partial occlusion of a coronary artery. In this case, they 
predicted ST depression on the same electrodes. This prediction is cited in many textbooks of 
cardiology and has strongly influenced they way clinicians think about ST-depression 
phenomena. However, later work with numerical models has shown that it does not agree 
with current knowledge of the heart. Oversimplification was the culprit in this case. Holland 
and Brooks, and other authors in the same epoch [10,14] assumed that the conductivity of the 
heart was the same in all directions. Under this assumption, numerical models also predict ST 
depression [11,18]. However, the cardiac muscle is profoundly anisotropic, with a much 
larger conductivity along than across the fibers. This anisotropy is believed to be 4 times 
stronger inside the networks of cells and gap junctions than in the interstitium. This unequal 
anisotropy causes a reversal in the sign of the ST-segment changes caused by non-transmural 
ischaemia. Present-day models predict a small ST elevation in this case [11,18]. 
Thus, recent modeling work has thus refuted the hypothesis that regional nontransmural 
ischaemia underlies ST depression in the ECG. Still, ST depression is known to occur, and to 
be related to partially obstructed coronary arteries. To resolve this paradox, we investigated 
the influence of the extent of a nontransmural ischaemic region on the sign of ST-segment 
changes. We found that if the region covers more than two thirds of the heart, ST depression 
can occur [18]. Moreover, if the region covered the whole heart, the simulated ECG 
resembled the ECG shape that is typically obtained during stress testing in patients with non-
ST-elevation ischaemic syndromes [19]. This leads to the new hypothesis that a global 
nontransmural ischaemia underlies this particular ECG morphology. 
A regional non-transmural ischaemia is thought to occur when a single coronary artery is 
malfunctioning. In contrast, for global nontransmural ischaemia to occur, either a multivessel 
disease or a global malfunctioning of the coronary vasculature must be assumed. This 
suggests that ST depression does not signal a single blocked artery. Rather, it indicates that 
two or three arteries are affected, or that the heart has become too weak to support its own 
blood supply.  
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